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SUMMARY

Simple and higher-order difference methods for the solution for the natural
frequencies of vibration of a uniform beam are compared. The same basic higher-
order method is used throughout for the interior cells, but three different
methods of boundary-condition representation are given.

Tables and graphs of the error in mode frequencies, as compared with a

continuous beam, are given for the various methods as a function of the number

of cells. It is concluded that higher-order methods improve accuracy for a
given number of cells, with essentially no change in the quantity of com-
puting equipment required.

*The work reported here was performed under NASA Contract No. NsG-63-60, ad-
ministered through The University of Michigan's Office of Research Adminstra-
tion, Ann Arbor.

**Associate Professor of Aeronautical and Astronautical Engineering, The Un-
iversity of Michigan.
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I. INTRODUCTION

One of the most commonly encountered problems of structural dynamics is
that of the lateral vibrations of beams. With the advent on a large scale of
analog and digital computers of greatly improved speed and computational ef-
ficiency, it is worthwhile to take another look at the methods available for
performing these computations. This report is principally concerned with im-
provements in analog computer methods of analysis of the beam-vibration prob-
lem. In particular, it is concerned with methods applicable to the electronic
differential analyzer. Nevertheless, it will be seen that the matrix formula-
tion of the problem and most of the results are directly applicable to digital
computation as well.

Until quite recently, all attempts to use analog computers in the solu-
tion of partial differential equations by difference techniques were re-

stricted to simple methods with accuracies of second order in the cell size
at best. In 195b, Fisher 1 suggested the use of higher-order differences in
the solution of these problems on the analog computer and indicated some of
the advantages to be expected. However, he was not concerned in his examples
with the beam equation and did not study the problem of boundary-condition
representation using higher-order methods.

This report considers in detail the adequate representation of boundary
conditions when higher-order methods are used, and presents the results of
rather extensive computations which enable one to obtain a feel for advantages
and disadvantages of each method. The analysis in the main body of the re-
port is concerned with uniform beams. The mode-frequency errors for a tapered
cantilever beam are considered in Appendix B and comparisons are made with
the continuous beam.

No analysis of mode-shape errors has been included. However, spot checks
have shown these errors to be comparable in magnitude with the frequency errors.

The author wishes to acknowledge the contributions and helpful sugges-
tions of R. M. Howe of the Department of Aeronautical and Astronautical Engi-
neering, particularly with respect to the section on errors. Thanks are also
due C. K. Shah, who did most of the numerical computation, and J. W. Thatcher,
who aided in the digital computer programming.



II. SYMBOLS

A mode-amplitude matrix

ao,al,etc. constant coefficients

B -[T]-l [K]

B.,B2 ,etc. difference matrices

D b an element of matrix B
966 bo,bl,etc. constant coefficients

C capacitance, constraint matrix

Cl,C 2 ,etc. constants

D difference matrix

E Young's modulus

F constraint force

f lateral force per unit length

G constant

H constant

h cell size

I moment of inertia of cross section, unit matrix

i mode number

K system matrix [m]" [k]

k stiffness matrix

k bending stiffness of a cell

L inductance, total length of beam



M bending moment

m mass, mass matrix

N total number of cells

n station designation, number of degrees of freedom

R resistance

S S = 0 is the characteristic equation

-1
T -(KJ[B]" . Also the time-dependent factor in the beam deflection D

9
t time 6

4
V shear force

x position along the beam

Y deflection amplitude

y lateral deflection

0 eigenvalue for a continuous beam of unit length

A a small perturbation of the designated quantity

E frequency error

S dimensionless lateral deflection

Sthe square of a mode frequency

9 beam slope

N eigenvalue for beam of length N

Sdimensionless position along beam

p mass per unit length

T dimensionless time



0) eigenvalue for difference beam of unit length

( )±j indices referring to row and column, respectively

( )o reference value

] transpose of the designated matrix

(-) computed in the modal (Y) coordinate system

- approximately equal to

D9 I I amplitude of a sinusoidally varying quantity, determinant of a matrix

6
If ( ) row matrix, or usual parenthesis notation

[ ] rectangular matrix, or usual brackets notation

( ) column matrix, or usual braces notation
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III. CONTINUOUS BEAMS

A. 'HE BEAM EJATION

We will restrict ourselves to the study of the lateral vibrations of a
thin beam where linearity is assumed. The partial differential equation des-
cribing the motion is

•-- ('EI~ +.• = f(x,t) (1)

6X2 Z + t 2  D

D

9
where 6

4
x = position along beam
y = lateral deflection
t = time

EI = bending stiffness
p = mass per unit length
f = lateral force per unit length

It can be seen that Eq. (i) is of fourth order in x and second order in

t. For our purposes it is often convenient to write four equations of first
order in x.

(2)ax

M = E1 (3)6x

v = m (4)ax

p yx- + f(x,t) (5)

where

9 = slope of beam

M = bending moments

V = shear force
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This set of partial differential equations is equivalent to Eq. (1). We will
see that the analog computer approach to the problem is based upon this latter
set of equations rather than the origirnal fourth-order equation.

B. SOLUTIONS OF THE BEAM EQUATION

1. General Solution.-In general, the parameters p and EI are functions
of x. Initially, however, we will assume that each is constant. Furthermore,
we will assume that units are chosen such that the coefficients are unity.
Our principal interest is in the solution of the homogeneous equation, so let

us set f(x,t) = 0. Then Eq. (1) becomes
D
9
64 + 3 = 0 (6)

6X4 6t2

It may be seen that essentially the same equation can be obtained by trans-
forming Eq. (1) to dimensionless form and again setting f(x,t) = 0. Let

L

X

L

T - t EI

where L is the length of the beam. Then

=4ý + F = 0 (7)
6t4 6-r

Equation (6) can be solved by the method of separation of variables. 2 '3

The solution is of the form

y - Y(x) T(t) (8)



where

Y(W = C, cos %1- x + C2 sin x + C3 cosh VI- x + C4 sinh 4 -0 x (9)

and

T~t -G cos Ot + H sin Ot (i0)

D
Mhe solution is valid only for certain discrete values of the parameter •.9
The constants C1, C2, C3, and C4 are evaluated from the conditions at the ends 6
of the beam. The constants G and H are evaluated from initial conditions.4

Let us now consider the equation for the eigenvalue 0 for various end

conditions.

2. Beam Built-In at Both Ends .-- Ihe boundary conditions for a beam of
unit length built-ln'at both ends are

y(O) = y(1) - 0 (11)

G(o) = 9(l) = o (12)

From Eqs. (9), (i1), and (12), we find that

C1 + C3 = 0 (13)

C2 + C4 = 0 (14)

(cos 4 cosh 4-O)CI + (sin 4-0 sinh 4•)C2 0 (15)
(- sin• sinh r1)CI + (cos ro - cosh rI)C2 0 (16)

giving the characteristic equation
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1-cos cosh'0 - 0 (17)

and also

Scos 4-t - cosh (18)

C1 sinh '-f - sin

The first four eigenvalues are

D 01 = 22.37329
6 p 61.67282
4 03 - 120.9034

S= 199.8594

The value 1 = 0 has no practical significance in this case and is omitted.

The ratio C2/c, is nearly equal to -1 for all modes, the approximation
being particularly close for modes higher than the first.

It will be helpful in the later development to express the form of the
deflection curve as a power series in x. Using a series expansion for the
trigonometric and hyperbolic functions in Eq. (9), we obtain

Y(x) = - 2C, + + + .. + 2C 2  + 7- + +

(19)

or

Y(x) -a - 2C A ]ý- + ~ -ý + (20)

Using Eqs. (2), (3), and (4), we can obtain the other oscillation magnitudes:

' "2C,.(vx" 13+ _ + "') (21)
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MI U -2ci (+ -2C1- s (22)

'4% 4. 7/8.~4 5

IVi I 2CjA(_1 + 4_+7 8!+ (23)

3. The Free-Free Beam.-For the case of a free-free beam, the boundary

conditions are

M(o) = M(l) = 0 (24) D

V(O) = M(l) = O (25) 694

Substituting into Eq. (9), we obtain

-Ci + C3 = 0 (26)

-C2 + C4  = 0 (27)

(cosh 4-_ - cos f) + (inh %f - sin PC = 0 (28)

sinh4-P + sin qf1)C + •osh'F - cos VfP)C2  = 0 (29)

giving, as before,

C = cos 4P- cosh v• (50)

C1 sinh 4  - sin (50)

The eigenvalue equation is the same as for the built-in case, namely,

1 - CosB cosh 4- = 0 (31)



The value 0 = 0 has •hysica.l significance in this case but since the mode in-
volves no elastic deformation, it is omitted. The remaining eigenvalues are
identical with those for the built-in case.

The amplitude of the motion is

Y(x) 2C1 (l+ x4 - 8 X÷ -- ÷ --+...

4: 8: 5 9 (32)

D giving the approximate amplitudes

Y(x) .2C, 1 _0 x + - .. ) (5)
4 4! 5! 8!98: 9

le c+ x +X p2x + .7 (3IX
113 4: 7! 8:

IMI," 2C, .. - -- + "') (35)

IvI 2C1 0Q x - W + __ g + (36)k 2! 5! 6.!

If we compare the solution for the free-free beam with that for a beam
built-in at both ends, we note some important similarities. We have seen that
the nonzero eigenvalues are identical. Beyond that, the roles of the deflec-
tion y and the bending moment M are interchanged in the two cases as may be
seen by comparing Eqs. (20) and (35) and also Eqs. (22) and (33). Similarly,
the roles of the slope Q and the shear force V are interchanged. This sim-
ilarity will hold even for the finite difference solution which will be ob-
tained later. Therefore it will not be necessary to carry out separate calcu-
lations for built-in and free-free beams.

4. The Cantilever Beam. -Thc boundary conditions in this case are

y(O) = 0 (37)
G(o) = 0 (38)
M(l) = 0 (39)
v(l) = 0 (40)

Applying these boundary conditions to the general solution given by Eq. (9),
we obtain

C1 + C3 = 0 (41)

C2 + C4 = 0 (42)
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0o. + coshi + (in rp + sinh4)3 - 0 (4,)

(inh q - sin + (os %1 + cosh - 0 (44)

From Eqs. (43) and (441 we obtain the eigenvalue equation

l+cos f3cosh4• - 0 (45)

D
and also 9

6
4

C=os COB + cosh 4• (46)

C1 sin 4 + sinh (46

the ratio being approximately -1 for all modes higher than the first..

The first five eigenvalues are

1 = 3.516015
S- 22.03449S= 61.69721

= 120.9019
f = - 199.8595

Note that, except for i - 1, the value of 13 in this case in approximately
equal to 01.. for the built-in or free-free case.

Tbhe amplitudes are given by the equations

Y(x) - 2Cj + Po+ "'"aO: +7' + ' + +

(47)
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+1 AX +2C4+ [ex a4 ~ F P~~: 6

(48)

IM I - -2C10L+ _ ÷ ... + + + P ..
(49)

D

6 IVi I - -C x3 + + + Pt+ + + (50)

Each of these expressions contains the same powers of x as was obtained for
the corresponding built-in case in Eqs. (20) to (23).

5. *The Pinned Beam.-The boundary conditions for a pinned beam are

y(o) = y(l) = 0 (51)

M(o) = M(l) = 0 (52)

Applying these conditions to the solution given in Eq. (9), we obtain

C1 = C3  = C4 = 0 (53)

and therefore

Y(X) - C2 sinF x (54)

where the eigenvalues are

=, 12 x
2 (i 1 1, 2, 3, ... ) (55)
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The power series form of the solution is

YWx =C 2 (4 X _- X + -X AX7 (56)
3! 5: 7/

Also

191 C2 " 4P 2 Q -x2'-! 4= " 6.,e+ ' (57)

IMI = c2• (58) 63! 5: 4

IVI = C2  ( + - + (59)

The eigenvalues in this case are not close to those calculated in the
previous cases. In fact, for the higher modes (large i), the eigenvalues tend
toward positions midway between those for the built-in, free-free, or cant-
ilever beams.



IV. DIFFERENCES OF ORDER h2

Previously we have obtained solutions for the partial differential equa-
tions describing a continuous uniform beam. Unfortunately, the analog com-
puter cannot solve partial differential equations directly but must solve the
set of ordinary differential equations which are obtained by finite difference

approximations to the spatial derivative. Thus we will obtain solution ampli-
tudes at a discrete set of points rather than continuously as a function of x.

D At the given points, however, the finite difference solution should closely
9 approximate the solution for the continuous beam.6~4

A. FINITE DIFFERENCE EWJATIONS

An analog computer approach to the beam-vibration problem using finite
difference equations of order h2 has been given by Howe and Howe 4 and others.5,6

The procedure in each case is based essentially upon Eq. (60).

"Yn + Yn+1  h6 3-y6

•x n~ - h - J~XS ln+*

The interval between stations is designated by h. Subscripts refer to the sta-
tion at which y (or one of its derivatives) is calculated. The last term is
the first error term and is not included in the computer mechanization. It is
given to provide an estimate of the accuracy of the approximation. Equation
(60) can be derived by wr ting the Taylor expansions about station n+# for yn
and yn+l and solving for FXjn4 after eliminating Yn+*"

Using the approximation of Eq. (60) and again assuming that El and p are

unity, the beam equations (2), (3), (4), and (5) can be written in difference
form:

-Yn + Yn+(@n+4 = h (61)

Mn -on- + Qn4 (62)h
"Mn + Mn+1 (63)

Vn = h



n "Vn. - Vn(

h

Note that displacements and bending moments are calculated at integer
stations whereas the slopes and shear forces are calculated at half-integer
stations. If one calculates all quantities only at integer stations, the re-
sult is to double the effective cell length and thereby to quadruple the first
error term. Therefore we will use "staggered" stations when finite difference
approximations to first derivatives are used.

The analog computer circuit representing a typical internal cell is D
9

shown in Fig. 1. It requires five amplifiers per cell if one reverses signs 6
at adjacent cells. 4

Another approach to the problem is to approximate tne second spatial
derivative rather than the first derivative. In this case the finite dif-
ference approximation is

A2 yn' "1 2yn + yn+1 h_

6Xn 2 6X4n (65)

and the corresponding beam equations solved on the computer are

Mn = Yn- 1 - 2Yn + Yn+1 (66)

h2

n Mn'1 + 2Mn - Mn+1 (67)h2

The analog computer circuit for this case requires only 3 amplifiers per
dell and is shown in Fig. 2. This circuit is subject to exactly the same
finite difference errors as the 5-amplifier circuit and, in fact, can be ob-
tained as a direct reduction of that circuit.

B. PHYSICAL INTFORPRETATION

There are two ways in which one can give physical meaning to finite dif-
ference approximations to the beam equations.
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7he first method is to consider a finite difference expression as an
approximation to a spatial derivative in the continuous beam at a given point.
For examplep the right-hand side of Eq. (64) approximates -" ,A-In. which, in
accordance with Eq. (5) for a continuous beam, is proportional to the accelera-
tion Yn of a local differential element.

The second method is to think of the set of finite difference equations
as representing exactly a lumped physical system whose response approximates
that of the continuous beam. The calculated values of accelerations, shear

D forces, etc., at the various stations have their real counterparts in the
9 lumped physical system. This approach is helpful in gaining physical insight
6 into the meaning of the equations, particularly for simple differences. Two
4 lumped physical representations of this finite difference approximation to

the beam equations are shown in Fig. 3.

In Fig. 3a the beam is approximated by a series of massless levers con-
nected by pin joints. At each joint a spring produces a moment (corresponding
to the bending moment) which is proportional to the difference in slope angle
Q of the adjacent levers. The mass of the beam is lumped into point masses
at the joints. The deflection y is measured at the joints while the slope Q
is measured at the midpoint of each lever.

Figure 3b shows an electrical circuit analog of the lumped mechanical
system of Fig. 3a. It also is described by finite difference Eqs. (61) to
(64). The displacement velocities are represented by voltages and the shear
forces and bending moments are represented by currents. The lumped bending
stiffnesses are represented by inductors, while the lumped masses are repre-
sented by capacitors. The transformers, each of turns ratio 1 to h, perform
the coordinate transformations relating slopes to deflections, and can be
considered as the analog of the massless levers.

C. BOUNDARY CONDITONS

We have previously given the equations stating the boundary conditions
on a continuous beam for the various cases under consideration. We must now
write corresponding equations for the finite difference beam. First, however,
we must decide whether to end the beam at a point where lateral deflection
and bending moment are computed (the "integer" stations), or at a point where
the slope and shear force are computed (the "half-integer" stations).

Experience has shown 7 that higher accuracy can be obtained for a given
amount of computation (or degrees of freedom) if the end occurs It a half-
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integer station for built-in or free ends. For the pinned case it is best to
end the beam at an integer i:tation.

1. Built-In End. -PreviLously we have seen that the displacement y and
slope Q are zero at a built-in end of a beam. Suppose, for example, that the
beam ends at station n+J. We must approximate the deflection at a half-
integer station where it is not usually defined. Using the Taylor expansion
apr1'oach and keeping only the first error term, we find that

+ (68)Yn+ Nl(yn n x2 Jn8 D

9
6
4

Therefore, since Yn+k and On+J are zero, we see from Eqs. (61) and (68) that

Yn = Y0+1 = 0 (69)

implying that there is no lateral displacement at the integer station adjacent
to a built-in end.

2. Free End.--At a free end we find that the bending moment M and shear
force V are zero. Using reasoning similar to that of the previous case, we
find that for a beam ending at station n+i

Mn = Mn+1 = 0 (70)

3. Pinned End.--For a pinned end at station n the boundary conditions
are quite straightforward, namely,

Yn = 0 (71)

Mn = 0 (72)

In case the pinned end occurs at station n+., the boundary conditions
are
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Yn W "Yn+ (73)

Mn - oMn+ (74)

4. The Use of Symmetry.-For vibration problems of a uniform beam where
the same boundary condition applies at each end, one can make use of symmetry
to reduce the required amount of computation. All the natural modes can be
classified according to whether the deflection curve has even or odd symmetry

D about the midpoint of the beam. Consider, for example, a beam that is built-
9 in at both ends. If one arranges the modes in order of increasing frequency,
6 then modes 1, 3, 5, etc., will have mode shapes with even symmetry about the

midpoint, whereas modes 2, 4, 6, etc., will exhibit odd symmetry about the
midpoint. (See Fig. 4.) In either event, however, one need analyze only one-
half of the beam since the motion of the other half can be deduced from sym-
metry.

For the case of even symmetry of the deflection curve, the bending mo-
ment curve will also show even symmetry, whereas the slope and shear force
curves will have odd symmetry. Conversely, for odd symmetry in y and M,there
will be even symmetry in 9 and V.

The above symmetry assumptions are exact and therefore the same fre-
quencies and mode shapes result as for the case where the equations are writ-
ten for the complete beam.

D. ANALOG COMPUTER CIRCUITS

1. Cantilever Beam.-The analog computer circuit for the cantilever beam
is useful in illustrating built-in and free end conditions. Two circuits are
shown in Fig. 5. The first circuit requires 3 amplifiers per cell, the sec-
ond, 5 amplifiers per cell. These are nominal values, however, and amplifiers
can be saved in representing the end cells because of the boundary conditions.
Thus it can be seen that the actual numbers of amplifiers required to repre-
sent a four-cell cantilever beam are 9 and 15, respectively. Cells can be
added by adding standard circuits such as those in Fig. 1 or Fig. 2, repre-
senting interior cells.

2. Built-In Beam.--The computer circuits for a six-cell beam that is
built-in at both ends are shown in Fig. 6. Note that only one-half of the
beam is actually represented on the computer; the motion of the other half is
inferred from symmetry. Circuits are shown for even or odd symmetry about the
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center of the span. In each case the center occurs at a half-integer station.
Circuits for the case where the center occurs at an integer station could
have been derived by a similar process. This situation would arise for a
built-in beam with an odd number of cells, assuming, of course, that the ends
occur at half-integer stations.

3. Pinned Bean. -The computer circuits representing a six-cell beam
with both ends pinned are shown in Fig. 7. The circuit for the case of odd
symmetry about the center, Fig. 7(b), is particularly simple because of the
additional symmetry about the quarter points along the span.

The circuits to be used in the higher-order methods that we consider are
quite similar in general form to those of Figs. 5(b), 6, and 7. However, D
most amplifiers will have four rather than two inputs. 9

6
4

E. MATRIX FORMULATION OF THE DIFFERENCE EQUATIONS

In the analysis of specific cases of finite difference beams, it is con-
venient to write the equations in matrix form. It is particularly important
to use this formulation if digital computations are to be performed.

In this report the beam equations are, in general, written as four first-
order difference equations. Using matrix notation, they are as follows:

(]) = (B1[] (y (75)

(M) - (B2 1 (9) (76)

(V) - [B3] (M) (77)

= [B4 ] (V) (78)

or

S+ (K] (y) = 0 (79)

where

[K] = -(B4 ](B3][B 2 ](B.] (80)
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Although the B matrices are rectangular in general, the K matrix must be square.
The natural frequencies are obtained from the determinantal equation

IK - )eI l (81)

where N is the natural frequency in rad/sec and I is the unit matrix. For the
case where the K matrix is n x n, there will be n values of N2 (roots) cor-

D responding to the n natural frequencies of the system.
966 As an example, consider the case of a six-cell beam that is built-in at

both ends. We will write the equations for modes with even symmetry at the
center. As before, El and p are assumed to be unity. The matrix equations
are

2 L (82)t . (3)

M -- •(83)

t Z ] AJ (84)

Assuming a unit cell size (h - i) and performing the matrix multiplica-
tions, we obtain
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, + [ 0(86)

According to Eq. (81), the roots are obtained from

(6-x2) -3
= 0 (87)

-3 (2-X2)

D
9

giving the characteristic equation 6
4

S+3 = 0 (88)

The roots are

W21 2= 0.394449, 7.60555

or

= 0.628052, 2.75782

These are the actual frequencies for the modes with even symmetry and
h = 1. For our purposes, however, it is convenient to assume that the total

length of the beam is unity. This implies that h = l/N, where N is the number
of cells, and results in multiplying each frequency by N2 . Denoting this
normalized frequency by a, we obtain

= 22.6099

u)= 99.2815
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The same basic matrix formulation will be used in the computations through-
out the report. The use of higher-order differences will add to the numerical
complexity but will not change the form of the equations.

F. RESULTS

The results of computations of the normalized frequency parameter W using
differences of order h2 are summarized in Tables II and III. The computations
are for built-in (or free-free) and cantilever beams for various numbers of

D cells. The finite difference error is plotted against the cell number N in
9 Figs. 13 and 14. These results are essentially the same as those given pre-6
4 viously by Howe and Howe4 and Michie, 7 except that the higher mode fre-

quencies are also included.

G. ORTHOGONALITY

We have seen previously that the equations of motion can be put in the
form

(y) + [K] (y) = 0 (79)

We can also write

[m] (y + [k] (y) = 0 (89)

where m and k are the mass and stiffness matrices, respectively. Comparing
Eqs. (79) and (89), we see that

-2.
[K] = [m] [k] (90)

Now, for the case of the first-order difference equations under considera-
tion here, both the m and k matrices are symmetric. In fact, the m matrix is
diagonal. It is always possible in these linear bilateral undamped systems
(whose kinetic and potential energies can be written as positive-definite
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quadratic forms) to find a coordinate transformation which will simultane-
ously diagonalize the m and k matrices. In this case the natural modes of the
system are said to be orthogonal.

The orthogonality of the modes is not surprising since we have already
seen (Fig. 3) that these equations represent exactly a lumped mechanical or
electrical system composed of linear bilateral elements. However, when we
discuss higher-order difference methods, we will find that the k matrix is
not always synmetric, in which case the modes are not orthogonal.

D
9
6
4
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V. DIFFERENCES OF ORBER h4

We have given a brief review of the calculation of eigenvalues for a uni-
form beam, using simple finite difference approximations to the spatial deriv-
atives. In this way we have obtained some physical feeling for the main fea-
tures of this method and perhaps some insight into the more promising approaches
to the use of higher-order differences. In the remainder of the report we
will consider several higher-order methods and indicate some of the advantages

D as well as problems in their use.

9
6
4 A. CHOICE OF THE BASIC DIFFERENCE EQUATION

Even before one gets into the questions concerning the representation of
boundary conditions, there are a number of possible choices one can make con-
cerning the basic higher-order difference equation to be used. First is the
question whether the approximation ought to be with respect to the first, sec-
ond, or possibly the fourth spatial derivative. We can immediately reject
the latter possibility on the grounds that it is quite sensitive to component
errors in the analog r.omDuter circuit. 8 ,9 Also there is the disadvantage that
other variables of interest such as 0, M, and V are not directly available
even though three amplifiers are required per cell.

The choice between approximating two second-order equations or four first-
order equations is more difficult. Let us consider each possibility in turn.

The most obvious approximation of order h' for the second derivative witfr
respect to x is given by the central difference equation

+1 6Yn- 1 - 30yn + 16yn+1 - Yn+2 + 4 ()

Xin 12h2  90 n

Using this approximation, the equations set up on the computer are of the form

Mn - (Yn.2 + 16yn.n - 30yn + 16yn+1 - Yn+2) (92)
12h 2

Y = 12 Mn2 -16Mn-1 + 3OMn- 16Mn+1 + Mn+)2 (93)
1h2 --
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where unity values are assumed for E1 and p. The analog computer rcircuit re-
quires three amplifiers per cell and up to five inputs per amplifier. (See
Fig. 8.)

Consider now some of the higher-order approximations to Z. The usual
central difference approximation of order h4 is ax

x 1hn- " 8yn + 8yn+ - Yn+ +- (94)

n-1n+2n+(, 3 0  n

D
The resulting beam equations are 9

6
4

1--1 (yn-2 - 8 Yn-i + 8 Yn+i - Yn+ (95)

1 (@ 8@n + y+ l -Yn+2

Mn = 1 ( @n-2 - 89n-1 + 8 @n+i - Qn+2 ) (96)

Vn ( 1 (n-2 -"81 + - (97)

Y 1 -Vn 2 + 8Vn_1 -8Vn+1 + Vn+2)12h n2-8nl(8

where EI and p are assumed to be of unit value. The analog computer circuit
requires nine amplifiers per cell in this case because each of the four output
variables must be generated with both signs. (Each cell would require 2
integrators, -3 summers, and 4 inverters.)

Another possibility is to try a higher-order approximation using stag-
gered stations, i.e., calculate the derivatives at the midpoints between sta-
tions where the function is defined. A central difference approximation of
this sort is the following:

6I U x n - 2 7yn + 27Yn+l - Yn+\ + 3h4 oy (99)
6XI n+j. 24 n/ 640 6x5In+i
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This approximation is seen to have a smaller error term than that for
Eq. (94). Furthermore, it will be seen that less analog computer equipment
is required to implement it.

Using the approximation of Eq. (99), the beam equations are

@n+y - 24(-'n-1 - 2 7 Yn + 2 7Yn+i - Yn+2) (100)

Mn M 1 n - 27n + 27n+" @ n+j) (101)

D
9 Vn+ _L _(Mnl - 27Mn + 27M-n+l1 - +2 (102)
6 n+ 24h -
4

Yn = 4L (Vn'j + 27Vn-j" 27Vn+j + Vn+) (103)

where, as before, unit values are assumed for EI and p. Note that y and M are
calculated at integer stations whereas 9 and V are calculated at half-integer
stations.

The analog computer circuit representation of Eqs. (100) to (103) re-
quires 5 amplifiers per cell with up to 4 inputs per amplifier. The circuit
for a typical cell is shown in Fig. 9. The signs of amplifier outputs alter-
nate on successive cells.

In spite of the fact that the circuit of Fig. 9 requires 5 amplifiers per
cell compared to 3 amplifiers per cell for the circuit of Fig. 8, the computa-
tions in this report are based on the beam equations as given by Eqs. (100)
to (103). The reasons for this choice are (1) the greater accuracy of the
basic difference equation, (2) greater ease and flexibility in applying bound-
ary conditions and forcing functions, and (3) less sensitivity to computer
component errors.

B. BOUNDARY CONDITIONS AND RESULTS

Earlier we saw that the representation of boundary conditions was relatively
straightforward for the case of difference equations of order h2 . When one
uses higher-order differences, the problem of applying boundary conditions be-
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comes more complex. Many approaches are possible and the accuracy of the re-
suits is strongly influenced by the method chosen. Nch of the remainder of
this report will be concerned with a study of the most promising methods of
applying boundary conditions when using higher-order differences in beam-
vibration problems.

It can be seen that if one uses the basic central difference approxima-
tion of Eq. (99), difficulties arise as one approaches the end of the beam be-
cause the needed stations beyond the end of the beam do not exist physically.
Consequently, one must make assumptions concerning virtual stations or else
one must use unbalanced or one-sided formulas.

D
1. Pinned Beam.-An end condition which is easy to implement is the 9

pinned end. In this case one can extend the beam by assuming symmetry and use 6
these virtual stations in the standard central difference formula that we have

chosen. Odd symmetry is assumed for the displacement y and bending moment M,
whereas even synnetry is assumed for the slope 0 and the shear force V. These
assumptions are entirely in keeping with the actual facts for the continuous
case and no error is introduced by this means. Thus any error in the fre-
quency calculations is due to the basic finite difference approximation rather
than the method of applying boundary conditions.

The results of frequency error calculations for a beam pinned at both
ends are shown in Fig. 21. These curves also represent the error inherent in
the basic central difference approximation. They indicate that the calculated

frequency tends to be low with the error decreasing roughly as h0 for in-
creasing numbers of cells.

It might be well to note that there is another end condition which can
be represented without error. This is the case for which y and M have even
symmetry and 0 and V have odd symmetry about the end.

2. Built-In Beam. -The two cases mentioned above are the only ones for
which we can use the basic central difference equation in a straightforward
manner for virtual stations beyond the end of the physical beam. All the other
boundary conditions require a different approach. One possibility is to use
one-sided approximations of order h4 . This means that the input data for cal-
culating the spatial derivative at a point do not come from stations placed
symmetrically with respect to that point. Rather, a majority or perhaps all
of the stations are located on one side of the point at which the derivative
is calculated.
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As was the case when we used simple differences (error of order h0) we
will again end the beam at a half-integer station. Thus 9 and V are normally
calculated at the end, whereas y and M are calculated at the integer station
that is located h/2 inboard. However, since the boundary conditions may
involve the values of y or M at the end of the beam, we must develop suit-
able approximations to their values at these points.

In this section we will use difference approximations of order h4 , re-
quiring input data only from stations on the actual beam. No symmetry

D assumptions are made at the ends. The approximations actually used in the
9 development are given in Table I.6

Now let us consider the case of a beam that is built-in at station
1/2 located at its left end. Using one-sided or central difference approx-
imations as required, we obtain

91 -5400 6000 -216 0 0 y
2

225 -6075 6075 -225 0 y2
21

9 0 225 -6075 6075 -225 y2 (104)
2 54ooh

But from Table I we note that

YL _- 2Y21 Y+29. vi 15y25 2y8+ 2880

where the error terms of order h' and h5 are zero for the case of a uniform
beam. This can be seen' from Eq. (1) or (6) in conjunction with the boundary
conditions yl = 0 and @1,= 0. Also, it follows directly from the series form

2 2

of the solution as given by Eq. (19).

Omitting terms of order h4 or higher, we find that
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9; 48oo o 0 0 . Y2
2

OL. -6025 6066 -225 0 Y3
2

OZ - .1 225 -6075 6075 -225 " Y, (lo6)
2 5400h

Thus we find that we can omit Yj as a coordinate in our analysis because D

of the constraint expressed in Eq. (105). This was also true when simple ap- 9

proximations of order h2 were used, but in that case yj was equal to zero. 6

In a similar manner, using the approximations of Table I and Eq. (99),
we can write the remaining beam equations for the case of a built-in end.

M 17 9 -5 1 0 ... @'
2

M2 -27 27 -1 0 0 .. Q
1 2 h (107)

M3 24 1 -27 27 -1 0 .. 0

2

"VA -22 17 9 5 1 M2
2_1 (lO8)

V. 24h 1 -27 27 -1 0 ... M
2

;b .j L
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Y2 -1 27-27 1 0 ... V,
2

Y3 1 0 -1 27 -27 1 ... va2-- 2j

Y4 24h 0 0 -1 27 -27 .. (109)

D 
"

9
6 Let us apply Eqs. (106) to (109) for the specific case of a 6-cell beam

that is built-in at both ends. Only the modes with even symmetry about the
center will be considered. The equations of motion areL 48oo 0 lY2l

2 40 (110)
5400h -6025 5841JY3

rV 1 [1 27 8 l1rM1
= 18 2 7 27 (1)

Lh -27 26 J[MJ

0 = 2{7 11 (113

Vj --9302(
2

Iva 1 .2_ 2 18 4 N2
2 24h

v-. -27 26. M3J
2i

JY2 -1 27 -7 V
Y3 24h 0 -1_26 ' (ll2

Letting h =I and applying Eqs. (8o) and (81), we obtain

(5.22099-?F) -2-77553
= 0 (114)

-4.293•87 (2.-8581.5-N2)
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giving the characteristic equation

x4 - 8.07914x2 + 3.oo462 - 0 (115)

and roots

x,2 = 0.625142, 2.77278

D
which can be normalized to 9

6
4

= 22.5051

0 = 99.8203

Comparing these results with those for the case where simple differences
were used, one finds that the h4 approximation gives somewhat better accuracy
for the first mode and approximately the same results for the higher mode.
This improvement due to using an h4 approximation seems to be rather slight.
However, if one looks at the accuracy of a given mode as the number of cells
is increased, the h4 approximation converges toward the correct result more
rapidly, as it must, of course, in the limit. See Table II and Fig. 15 for
a summary of the results.

3. Free Beam. -Previously we have seen that the representation of a free
end is obtained from that for a built-in end by interchanging the roles of y
and M and also those of 9 and V. Furthermore, we found for a continuous beam
that the nonzero mode frequencies are identical for the cases where both ends
are built-in or both ends are free. This is also true when finite difference
methcds are used. To illustrate this, let us calculate the mode frequencies
(even symmetry only) of a 6-cell beam that is free at both ends.

'Ihe equations of motion are

"01 -93 207 -114 y'1
21:1 24h -L- -22 18 4 Y2  (116)
2 24h

QI_ 1 -27 26

2 LL3
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14 - 7 26 (117)

fv [480001if8)

D 1,v 40 6025 58~ M
9
64

M2 1 -7 (i19)IL

S1-2719)
M 24h 0 2 6L 2

Performing the matrix multiplications for the case where h = 1, we obtain
from Eq. (81) that

(o.2o619-02) -0.0oo31 -0.20588

- A.16868 (5.46778002) -3.29905 = 0 (120)

1.25959 -3.64483 (2.40524-x 2)

giving the characteristic equation

2 - 8.079l4k + 3.00462) = 0 (121)

Comparing Eqs. (115) and (121), we see that the nonzero roots are identical

even though the K matrices are quite different.

All computations in this report applicable to either a built-in or free

beam were actually set up considering the built-in case, using equations
similar to (110) to (113).

4. Cantilever Beam.--0ne can use the methods developed for obtaining

h4 accuracy in the representation of a built-in end or a free end to write the

equations of motion for a cantilever beam. The minimum number of cells re-
quired for h' accuracy is five.* Other methods to be considered later will be



applicable with fewer cells.

As an example of a typical calculation, consider a six-cell cantilever
beam. The equations of motion are

9. 4800 o 0 0 0
2 Y2

-6025 6o66 -225 0 0

2 Y3
225 -6075 6075 -225 0

2 4 1 (122) D

OR 5400h 0 225 -6075 6075 -225 9
2 Y56
291, -225 1125 -2025 -3825 4950

2 Y

GJA 4950 -24975 50625 -51525 20925
2.

-17 9 -5 1 0 0 92
2

M2 -27 27 -1 0 0 0 2

--- 1 -27 27 -1 0 0 WI (123)S24h2

o4 0 1 -27 27 -1 0 2
02

MI 0 0 1 -27 27 -1 2

V, -20925 51525 -50625 24975 -4950 0,
2 M

Va .-4950 3825 2025 .- 125 225
2

Vi 225 -6075 6075 -225 0

VZ 5400h 0 225 -6075 6075 -225

2 M4

V, 0 0 225 -6066 6025
2

V 1L0 0 0 0 _4800J
2
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Y2 -1 27 -27 1 0 0 "

Va
Y3 0 -1 27 -27 1 0 2

VD.
- 0 0 -1 27 -27 1 2 (125)

2Y4 0 0 0 -1 27 -27 V(
2

D Y0 0 0 1 -5 9 17 v2

9
6
4 The large numbers in Eqs. (122) and (124) result directly from using the

one-sided approximations of order h4 as given in part A of Table I.

Note the similarities in the matrices of Eqs. (122) and (124). Reading
from left to right, beginning with the first row of (122), one sees the neg-
ative of the numbers obtained in reading from right to left beginning with
the last row of (124). A similar relationship exists between Eqs. (123) and
(125), except for sign. This property is common to all finite difference
analyses of the cantilever beam and results from the complementary character
of y and M and also of 9 and V.

Setting h = 1, one obtains the characteristic equations for the system:

10 - 29.01745ks + 221.62314?.e - 462.52608oW + 148.71888?2 - 1.37737 = 0
(126)

giving the normalized frequencies

Wi = 3.51687

wg = 22.1688
w3 = 59.3364
a,4  = 99.8114
ws = 153.687

Note that all except the lowest mode frequency are roughly equal to cor-
responding frequencies for the 6-cell built-in case. An even closer agree-
ment occurs in the percentage error for corresponding cases. In fact, for
large N and comparing the higher modes, one finds essentially identical re-
sults for the built-in and cantilever beams. (See Tables II and III.)



C. ORMhOGONALITY

We have seen that the use of approximations of order h2 leads to orthog-
onal modes. Also, one can obtain a lumped physical system composed of linear,
bilateral elements that is represented exactly by the equations of motion.
This is no longer true for the h' approximation using one-sided differences
at the boundaries. If one writes the equations of motion, the m matrix is
symmetric but the k matrix is not. [See Eq. (120), for example.) Thus the
system is nonphysical, i.e., a passive system of linear bilateral elements
cannot be obtained for which the equations are an exact mathematical repre-
sentation. Also, the modes are not orthogonal, implying that one cannot ob-
tain a coordinate transformation that diagonalizes the m and k matrices D
simultaneously. 9

6
To illustrate this point, consider again the 6-cell built-in beam for

the case of even symmetry. For each mode, one can calculate an amplitude
ratio that indicates the relative magnitude of the motions of y2 and y3 .

& = 5.22099-A?2
A2  2.77553 (127)

The results for this case are given by the matrix

00000 1.0000•
[A] = [](128)

A*. 74028 -0.88897

where each column corresponds to a natural mode and the amplitude of the Y2
motion is arbitrarily set equal to unity.

The original mass matrix for this system is

85 -21
181 2251

in] -- (129)

-2 626
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The deviations from a unit matrix in this case are brought about by the elimina-
tion of y1 using the constraint equation

y - -Y2- Y3 (150)

The stiffness matrix for the original system is

D
9 51698 -2.938001
6 [k] = (m][K] = - (131)

.34715 
2.88740o

Consider now the coordinate transformation

(y) = [A](Y] (132)

The mass matrix in terms of the barred coordinate system is

T r4.o5185  -0.5077~
[I2] = (A] T[m]A] = (133)

• O50770 1.85671

and the stiffness matrix is

= r1.58347 -3.9034(

L.19842  14 .27502J

Thus we see that neither the mass nor the stiffness matrix is diagonalized
by the transformation to generalized modal coordinates, and therefore the modes
are not orthogonal. Furthermore, the i matrix is not symmetric.

We have defined orthogonality of modes in terms of a simultaneous diagonaliza-
tion of the mass and stiffness matrices by a coordinate transformation. It should
be noted, however, that a nonorthogonality of modes in this sense does not nec-
essarily imply dependence or coupling of modes. In the above case, for example,
the matrix [Mf'([] turns out to be diagonal.



VI. THE USE OF SYMETRY IN REPRESENTING BOUNDARY CONDITIONS

The use of an h4 approximation in a straightforward manner has been shown
to require the use of one-sided differences near the ends, whereas central
differences can be used in middle portion. Another approach to the problem
of representing boundary conditions is to assume a virtual or image beam ex-
tending beyond the actual beam and to use values of y, Q, M, and V in this
imaginary beam, as necessary, in the standard central difference equations.
This approach will now be investigated.

D

A. SYMMETRY ASSUMPTIONS 
9

6
In establishing the basic approach to the problem, we will again use the 4

central difference approximation

(yI • • - 27yn + 27yn+_ - + (99)

6x n+• 24h n-) 640 x5 In+1

using staggered stations such that y and M are calculated at integer stations
whereas 9 and V are calculated at half-integer stations. The beam ends occur
at half-integer stations.

Let us now consider appropriate symmetry assumptions for a cantilever beam,
chosen to illustrate free and built-in end conditions. (See Fig. 10.) First
we note that the assumption of even symmetry in y about the built-in end will
give zero slope at that end, using Eq. (99). (The assumption of odd symmetry
here would not give the proper result.) Successive differentiation of y with
respect to x gives alternating odd and even functions, as shown by the dashed
lines where they deviate from the solid lines. Thus the assumed beam shows
a discontinuity in V (and the slope of M). However, one can see from the basic
approximation given in Eq. (99) that the presence of discontinuities will
amount to an increase in the magnitude of the higher derivatives at this point
and thereby increase the error in the approximation.

To avoid these errors due to discontinuities, we will arbitrarily assume
continuous curves at the boundaries even though these assumptions are not
physically consistent. We are interested in obtaining the best possible
estimates for the derivatives of y within the actual beam, and therefore we
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make the most promising assumptions concerning the virtual beam.

The symmetry assumptions that we will use can be summarized as follows:

(1) If the derivative of the function approaches zero as the end of the
actual beam is approached, assume even symmetry about the end.

(2) If the derivative of the function does not approach zero as the end
is approached, assume odd symmetry about the end, possibly with an offset to

D avoid discontinuities.
9
6 The procedure by which these assumptions are incorporated into the equa-

tions of motion is quite straightforward except for the extrapolation of M
at a built-in end or the similar extrapolation of y at a free end. Taking
the case of the built-in end, a functional form must be assumed for M near
the boundary. Referring to the analytical solution near a built-in end, as
given by Eq. (22) or (49), we find that the magnitude of M varies according
to a linear plus a fourth-order term in x plus other higher-order terms. So
a logical choice of the functional form of M near the boundary might be

M = ao + alx Px 4  (135)

where the last term takes the plus or minus sign depending on whether x is

positive or negative. This assumption results in the equations

Mo 1 [503M, - 310Ma + 39Mg] (136)
232

and

= -- [735M, - 542M2 + 39M3] (137)

where the built-in end occurs at station

Another possibility is to assume that M is an offset odd function having
a linear plus cubic variation with x. Thus we might assume that

M1 = bo+bx + b3x
3 (138)
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•.As assumption avoids having discontinuous derivatives at x = 0 and gives
numerically simpler equations. In this case

= - [•7M.- 5M2 + 431 (139)
3

M.1  = 14lOM1 - 8M + M3] (140)
3

Computations were run for many cases, using either Eq. (135) or (138), and

the results were compared. The differences were fairly small and, if anything, D
favored the linear plus cubic assumption. All results given in this report, 9

assuming symmetry at the boundaries, are based upon a linear plus cubic varia- 6

tion of M near a built-in end, i.e., upon Eqs. (139) and (140). 4

The assumptions concerning the form of y near a built-in end are the

same as we used previously for the h4 case. Again we can eliminate y1 by
using the equation

Y1 y 2  L y 3  (130)
9 25

Of course a similar relation exists for the value of M at the station

nearest a free end.

B. EQJATIONS FOR A BUILT-IN BEAM

1. General Case.--We have seen how we can use symmetry to extrapolate
the variables of the problem beyond the actual limits of the beam. Using these

extrapolated values and the basic central difference approximation of Eq. (99),

we can write general equations for a built-in beam similar to those given by

h4 approximation in Eqs. (106) to (109). They are

92 4775 9 0 0 ... Y2
2

91 -6025 6066 -225 0 Y3

2
10 1 225 -6075 6075 -225 ... Y4 (141)

2 5400h

j L "
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MI26 -1 0 0 ... I

M2  -27 27 -1 0
2

M, = 2-- 1 -27 27 -1 DZ (142)
24h

D
9
6
4 VA -98 124 -26 0 ... M

2

VZ 1 -74 76 -2 0 Mo
1 Rol (143)

v, 72h 3 -81 81 -3 ... M

Y2 -1 27 -27 1 0 ... V
2

Y3 0 -1 27 -27 1 V
P 1 2 (144)

Y4 24h 0 0 -1 27 -27 ...

A comparison of the above equations with those for the h4 approximation
as given by Eqs. (106) to (109) shows considerable similarity. It should be
noted, however, that the use of symmetry at the boundary never requires more
than four inputs per amplifier in the analog computer circuit, whereas the h'
approximation requires up to five inputs per amplifier.

2. The 6-Cell Case .-- As an example of a mode calculation for a specific
case, consider again the modes with even symmetry about the center for a 6-
cell beam built-in at both ends. The equations of motion (using symmetry
assumptions at the boundaries) are
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24h ]{47 -26 9

46
V•, -98 124 -2•

2 76 2 (147)

k21 72h 74 iE Y
OP - L -8 1 f(

(8M 7~ 26 -4.90

I2 0 27 (149)

24h -

2

(8079M 1 -26J900

-4.59275 (2.91454-•2)

giving the characteristic equation

V .1 10.9623 + 4.17146 = 0 (150)
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The roots are

NJ,.92 0.62828, 3.25078

and the normalized roots are

= 22.6182

S= 117.028

9
6 Recalling that the corresponding normalized frequencies for the con-
4 tinuous beam are

13 = 22.3733

S= 120.903

we see that the above results give a somewhat larger error for the first mode
than does the h4 approximation, but the error in the higher mode is much smaller.

An alternate method can be used, particularly with the use of a digital
computer, to set up the equations of motion and to solve them. This method,
which indicates more clearly the symmetry assumptions in its formulation, is

given in Appendix A.

3. Results. -The results of calculations for built-in and cantilever beams,
using symmetry assumptions at the boundaries1, are summarized in Tables II and
III and in Figs. 17 and 18.

Comparing these results with those for the h4 approximation, we note that
for a practical range of N (say 6 to 16) the use of symmetry gives lower ac-
curacy on the low frequency modes but better accuracy on the higher modes. For
example, consider the case of an 8-cell cantilever beam having a total of
seven modes. Using symmetry at the boundaries, the first four modes have a
frequency error well within 1% and even the sixth mode has an error of only 10%,
approximately. By contrast, the use of h4 approximations at the boundaries
gives better accuracy for the first three modes but the fourth mode has an
error of nearly 5% and the sixth mode has an error of approximately 20%.



C. ORTHOGONALITY

It turns out when boundary conditions are imposed using symmetry that
the resulting modes of vibration are nearly, but not exactly, orthogonal.
This means that this approach also results in a nonphysical system in the
sense that a lumped model cannot be built of linear bilateral elements.

To compare the orthogonality properties with those for the h4 approxi-
mation, let us consider again the example of the 6-cell, built-in beam.
The mass matrix is again

-2 D
81 225 9

mi] (129) 6
-2 626 4
225 625J

The stiffness matrix is

8.48426 -4.63270
(k - [m][K = (151)

..47131 2.95823

The amplitude ratios are calculated from

A2 8.o4779-2(

Al 4.39000 (152)

yielding the modal matrix

1.000 1.000001
[A) = ' (153)

In the modal coordinate system the mass matrix is
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F4.o6232 o.o3676
[M] - [A]T(m](A] = L'0,676 1.3895j (154)

The stiffness matrix is

D [ii = [A]T [k](A] = 165 o834 (155)
69 o.1451 14.68446
4

7hus neither matrix is diagonalized by the transformation, but the result
is considerably closer than was the case for the h4 approximation, as can be
seen from Eqs. (133) and (134).
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VII. THE PASSIVE CIRCUIT METHOD

We have seen in the case of the simple approximation of order h2 that an
electrical circuit exists which the difference equations describe exactly.
However, when one goes to higher-order differences and .ses the methods we
have described for establishing the boundary conditions, one finds that the
resulting equations are nonphysical, i.e., no passive linear circuit analogy
exists.

It can be shown that the nonphysical character of the higher-order methods
discussed thus far is due to the boundary-condition representation rather than D
the basic difference approximation. In this section a passive circuit analogy 9
will be obtained for the basic higher-order approximations of Eqs. (100) to 6
(103). By imposing boundary conditions on this circuit and writing the cor- 4
responding equations, one can obtain a set of mutually orthogonal modes.

A. PASSIVE CIRCUIT ANALOGY

We have been using the following finite difference approximations to the
beam equations.

_ 1 (y - 2 7 yn + 27Yn+ - yn+2 (00)

@n+• 24h n-1(1 0

_ 1j7 vnJ -- @• 7n+i n+

M n = I n-j - 2 7 -n-j +27Qi - (101)

S1 2 + 27Mn+l -Mn+ (102)

Yn (1Vn' + 2 7V n-- 2 7Vn+j + Vn+) (103)

Setting h = 1, and representing generalized velocities by voltages and gen-
eralized forces by currents, one can show that the passive circuit of Fig. 11
is described by these equations. Note that three transformers, one inductor,
and one capacitor are required per cell.

The rather large transformer requirement of Fig. 11 compared with the h2

approximation of Fig. 3(b) makes it impractical to use this passive circuit
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directly. Instead we can write the circuit equations and solve them using a
differential analyzer or a digital computer. 'The equipment requirements in
this case are almost the same as for the other higher-order methods but are
actually slightly less due to the details of boundary representation.

B. MHE BUILT-IN BEAM

1. Symmetry Assumptions.--To obtain a proper representation of a built-
D in end, it is convenient to make certain symmetry assumptions consistent
9 with the given boundary conditions. We will assume that the deflection curve
6 has even symmetry about the end and zero slope at the boundary. Thus y and

M are even functions of x, while 9 and V are odd functions of x, as shown

by the dashed lines of Fig. 10.

The circuit that has been used to represent a built-in end is shown in
Fig. 12. The beam end is at the center of the diagram (station J) with the
virtual beam on the left and the actual beam on the right. The autotrans-
former at the bottom of the figure represents the constraint relating y1
and y2.

2. Constraint Equation.--It can be shown for a uniform beam that

S1 " +2 512 e 6eY' x (156)

S= 6n-i + 9 Yn + "yn+i. Yn+ 5 I n(156

So if we assume that y has even symmetry about the built-in end at station m
2

and also set y equal to zero, we obtain the approximate equality

1- Y2 (157)
9

This is used as the constraint equation in the passive circuit approach.

It can be seen from Fig. 12 that the autotransformer representing the con-
straint equation causes a certain relationship to exist between voltages and
also between currents. In mechanical terms, a constraint equation relating
coordinates also implies forces of constraint to be exerted on the system in
such a way that no work is done. These forces of constraint have been ignored
in the previous two approaches to the problem and this resulted in a lack of
symmetry in the stiffness matrices.
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Tb calculate the effect of these forces of constraint, consider a beam
described by the matrix equation

[m](y) - [(D]V) (158)

Now suppose a constraint is imposed as described by

y, = (C)(y) (159) D

9
6

where the summation is over all y except Yl. (The parentheses denote a row 4
matrix.) Let us include the constraint forces in the analysis and also separate
the Yi equation from the others. Tlien we obtain

mn1 ? -- (D1 )(V) + F, (160)

[m](y) ] [D](V) + (F) (161)

where the F are constraint forces acting on the beam. Note that Eq. (161) does
not contain Yj and the D matrix does not contain a D, row.

TNow multiply (160) by Yi and premultiply (161) by (y)T. Adding, we obtain

y~ly,• + (y)T[m](y) = yl(D1 )(V) + (y)T[D](V) + Fjyj + (y)T(F) (162)

Since the constraint does no work, we can write

Fxyj + (y)T(F) = 0 (163)

and the last two terms of (162) drop out. Finally, substituting for y1 from
Eq. (159), dividing out (y)T, and rearranging, we obtain
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ml(C)(y)(C)T + [m](y] - (D1 ) v)(c)T + (DIV) (164)

This gives the equations of motion with YX omitted and constraint forces in-
cluded. For example, in the present case with a simple constraint given by
Eq. (157), the effective mass at Y2 is 82/81 times its value before the con-
straint was applied. More complicated constraints will result in inertial
coupling, but the effective inertia matrix will always be symnetric.

D 3. General Case.--he complete equations of motion for a built-in beam

6 can be written now using the passive circuit method. They are
4

92 217 -9 0 0 ... Y2
2

S-242 243 -9 0 Y3
I2p 1 (165)

97 216h 9 -243 243 -9 ... Y4
.2 ..

M. 26 -1 0 0 *.. 9•
2

M2 1 -27 27 -1 0o9
2 4 2 (166)

M3 - h 1 -27 27 -1 ...
2

* *

V -26 27 -1 0 ... M
2

VD 1 -27 27 -1 M22 = z (167)
vz 2h 0 1 -27 27 ... M3

2 *
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5_ 1953 -2178 81 0 ...
2

Y3 -82 2214 -2214 82 v,
_ 1 2 (168)

Y4 1968h 0 -82 2214 -2214 ... VZ
2

The amount of analog computer equipment needed for the passive circuit D
method is slightly less than for either of the other higher-order methods. 9
There are two reasons for this. First, the value of V at a built-in end (or 6
of 9 at a free end) need not be calculated. Second, the signs are optimum in 4
that no extra amplifiers are required for inversion at any point.

The equations of motion for stations near a free end can be obtained most
easily from the above equations by exchanging the roles of y and M and also

9 and V. Of course they could also be obtained directly from the passive cir-
cuit, remembering the constraint equation relating the values of M at the last
two stations.

4. The 6 -Cell Case.--Again let us consider the even symmetry modes of
a 6 -cell beam built-in at both ends. Using the passive circuit approach, the

equations of motion are

9au 217 -9 YJ2~ 1 I (169)

216h [2 4 2 23] yJ

S27 27 (170)

- 2

$3 1 -K6

fIV 2 24 3 M2 (171)

40'
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00 0
IY2I 1 953 -217d IV12 1 I (172)

1968h 2 1i
" Y3 --- 1-81 21. v

Setting h = 1, we can solve for the eigenvalues from

(8.47527-)2) -4.54772
= 0 (173)

-4.60386 (2.99140-X2)
D
9
6 or
4

X4 - 11.46667W2 + 4.41583 = 0 (174)

The normalized roots are

= 22.7395

e= 119.765

In this case the first mode frequency is 1.6% high and the second mode fre-
quency is 0.94% low.

C. RESULTS

The results of mode frequency calculations for a uniform beam using the
passive circuit method are summarized in Tables II and III and in Figs. 19 and
20.

Comparing these results with those obtained previously, using other methods,
we note that the passive circuit method gives very good over-all accuracy for

cases where the number of cells is 9 or more. On the other hand, the symmetry
method appears to give generally better results for smaller values of N. Of

course, the h4 method is still best for accuracies of the order of 0.25% or
better.
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One way of comparing the various methods is to obtain an approximate number
of cells required per wavelength to obtain a given accuracy. For 1% error,
the ordinary h2 approximation requires 12 cells per wavelength. In contrast,
the h4 approximation requires 6-1/2 cells per wavelength, the symmetry meth-
od requires 5 cells per wavelength, and the passive circuit method requires
4-1/2 cells per wavelength.

D. ORTHOGONALITY

In contrast with the higher-order methods considered previously, the pas-
sive circuit method produces orthogonal modes. The orthogonality property is D
a result of the symmetry of the original m and k matrices. 9

6
We can illustrate this point by referring again to the 6 -cell case. From 4

Eq. (173) we see that the amplitude ratios for the two modes can be calculated
using

8.47527-, 2

Al 4.54772 (175)

The modal matrix is

[1.00000 1.000001

[A] = l.77590 000 (176)

The original mass matrix is

0 1

The corresponding stiffness matrix is

8.57990 -4.603861
(k]- (178)

_4.60386 2.99140]



53

After the transformation

(Y) " [AIfM) (132)

the resulting mass and stiffness matrices are

9 [f]= [A][(m](A] = (179)6 0 1.33730

[ (] = (AT kl[A] = (18o)
0 14.8061

The diagonal nature of these matrices implies orthogonality of modes, and also
that the motion of each of the modal coordinates is independent of the others.

It should be noted in passing that the matrix

[,2] = (A]' [K][A] (181)

is diagonal for all three methods and the numbers along the main diagonal are
the squares of the mode frequencies .lO This does not imply orthogonality,
however, as we have defined it.



VIII. SOURCES OF ERROR

In this section we will consider the principal sources of error in the
methods that have been suggested for the solution of beam vibration problems.
These errors are (1) finite difference errors due to the basic difference approx-
imation; (2) finite difference errors in the representation of boundary con-
ditions, and (3) component errors. The error curves that have been presented
so far represent a combination of error sources (1) and (2) above for various
specific cases. Now we will consider them with somewhat more generality.

D

A. FINI•E DIFFERENCE ERRORS 9
6

1. The h2 Approximation. We have seen previously for a pinned beam that,

when proper symmetry assumptions are made, there is no additional error due to
the method of representing boundary conditions and so the entire computed
error is due to the basic finite difference approximation. So consider now
a uniform beam pinned at each end at an integer station.

Recall again the basic h2 approximation

y"n +Yn+ 1  h2 (60)

h 24 n+.

Repeated application of Eq. (60) yields

-62 yn'1 " 2yn + yn+1 h-2

X (65)
X2h 2  

n12 Vin

Similarly, one can obtain

.Y Yn- 2 - 4 yn- 1 + 6 yn - 4 yn+l + yn+- h2 j
nX4 h 6 n (182)

which is the result of applying Eq. (60) four times in sequence.
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We will again consider the equation for the continuous beam in simplified
form.

+ = o (6)
ax4  6t2

As we have seen previously, the solution for the continuous pinned beam is of
D the form
9
6
4= Yi sin x (Gi cos Oit + Hi sin Oit) (183)

i

where

n= i2 2  (i = 1, 2, 3, ... ) (5)

For the case of the ith mode, we can substitute Eqs. (182) and (185) into (6),
obtaining

h1 -2 - 4 yn-+ 6 yn- 4 Yn++ + yn + h2 Yn _ 0 Yn = 0

or

--h( n-2 - 4 yn-i + 6 yn -
4 Yn+i + Yn+2 - •Yn " - (184)

Now the left-hand side of Eq. (184) is of the same form as the approximation
to __y used in the finite difference solution. Therefore, the corresponding

6x4 n
finite difference equation is

16 - + 6y - += nn2 (185)
S-" n-i Yn -y++ Yn
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where w, is the finite difference eigenvalue corresponding to Pi. So the right
sides of Eqs. (184) and (185) can be equated if sinusoidal mode shapes are
assumed in each case. Finally, noting that

h (186)

we obtain

F 1/in\ 2 +
9
6

or 4

Wi= (in) i - /Jlt 2 + .. ] (187)

where i is the mode number.

2. The h' Approximation.--A similar approach can be used to compute the
frequency error for a pinned beam using higher-order differences. The basic
approximation is

a-l 0 1 n 1 i- 2 7 yn + 2 7 Yn+ - +(
ax n+1 24h - 64o !xý n+j

Using successive repetitions of Eq. (99), we obtain

aX2 n (24h)2 320 Wxi n

(188)

and

,• 1 n + .h4 (189)

n ( 2 4 h)4 (n-a n+e 160 Xn
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Proceeding in a manner similar to that for the hV approximation, we ob-
tain

= .~
160 P

or

D 0) (int) 2 31 AA2.4i + .i(190)9320 X1

6 ~L 32~/ J
4

Thus we see that the basic finite difference approximation tends to give

frequencies that are too low. The first error term in Eq. (190) gives an
accurate estimate of the error only for small i/N ratios and more terms are
needed for most practical cases. The actual error curves are plotted in Fig.
21 for the h0 approximation.

3. Maximum Errors .-- From the tabulated results of the calculations of
mode frequencies, it is seen that, as the i/N ratio increases, the error also
increases. In the limit as i/N approaches unity, the error is independent
of the boundary conditions and depends only on the basic approximation. This

limiting value of the error could be obtained by evaluating the complete
series indicated in Eq. (187) or (190) for i/N = 1. A simpler way to obtain
this result is to note that as i/N approaches unity the motion at adjacent

stations is equal in amplitude but opposite in sign. Knowing this, one can

calculate the frequency directly.

For example, using the h? approximation and assuming h = 1, we find that

yn + 16yn = 0 (191)

yielding the frequency
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The corresponding frequency for the continuous beam is the same as for a pinned
beem of unit length vibrating in its fundamental mode; namely, A2 . So the
maximum error far the h2 approximation is

ra = ;24

mx = 524 9.472% (192)

Performing a similar calculation for the h4 case, we obtain

Yn +(1 4 Yn = 0 (193)
'3 D

9
6

or

49
9

giving a maximum error

C -- -49 = 44.836% (194)max 91(2

B. BOUNDARY-CONDITION ERRORS

We have seen that an analysis of uniform pinned beams with various numbers

of cells gives directly the finite difference error due to the basic central

difference approximation. Furthermore, we note that the eigenvalues of the
pinned case alternate with the eigenvalues of either the cantilever or built-

in case. Consequently, if the method of applying boundary conditions intro-

duced no additional error, one would expect the error curves for the cantilever
or built-in bean to run between and roughly parallel to the error curves for

the pinned beam. Instead, one finds that all the boundary-con4ition methods

considered here result in raising the natural frequencies. This causes a gen-
eral improvement in accuracy for i/N values greater than about 0.3 for the
symmetry and passive circuit approximations. For the h4 method the accuracy
is improved for all i/N.
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For the lower modes and large N, the error for the three built-in or
cantilever cases mentioned above exceeds the error for the corresponding pinned
case because the boundary-condition errors are of lower order in h than the
basic central difference errors, and ultimately must predominate. For example,
in the equations for a built-in beam using the simple "h2" approximation, we

find the expression

.,= Y2 (195)
2 h

(See Eq. (82).] The error in this case is actually of order h, as can be ascer-
D tained by the Taylor expansion method.
9
6 Similarly, the passive circuit and symmetry methods of approximating a built-

in end use the expression

M - hi 6 Q - (196)
24h 2 9a

which has a first error term of order h. On the other hand, each equation used

in the h4 approximation is truly of order h 4 , and therefore the boundary-
condition errors do not tend to dominate for large N.

A study of the error curves presented in Figs. 16 and 21 l*ads one to the
conclusion that the first error term alone does not give a reliable estimate
of the actual errors encountered. The i/N ratio must be the order of 0.1 or
less before the first error term clearly predominates and by this time roundoff
or component errors mask the desired truncation error.

To illustrate this point, it is of interest to calculate the rate at
which the actual truncation errors decrease with increasing N as N approaches

16, i.e., at the right-hand edge of the error diagram. Rough calculations
indicate that the h2 and symmetry methods have an error that is decreasing
as h1 -9 , while the error for the passive circuit method is decreasing as h3'°

and that for the h' method is decreasing as h4' 7 for increasing N.

The conclusion from the preceding analysis is that the method of repre-
senting boundary conditions should be chosen on the basis of the require-
ments of the problem and actual error curves, rather than assuming that an
h4 approximation is necessarily more accurate than an hP or lower approxima-
tion over the practical range of N. Our results show that so-called higher-
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order methods are generally superior to simpler approximation methods. How-
ever, the choice between the various methods of representing boundary condi-
tions should be made on the basis of the problem at hand.

C. COMPCRENT ERRORS

In this section we will consider the sensitivity of the calculated roots
or frequencies to small shifts or inaccuracies of the component values. This
will be accomplished by perturbing one of the matrix elements and calculating
the resulting frequency shift.

D
Suppose we write the characteristic equation in the form 9

6
'4

S(n, bij) = 0 (197)

where the eigenvalue, n = W2, is the square of the frequency (rad/sec) of one
of the modes and bjj is the matrix element that is to be perturbed. For
small deviations about the reference values no, bijo we can expand in the
series

s(TI, bij) = S(Tn0, bijo ) + a n+ 3SIAbij + .. (198)

where

bij = bijo + Abij

From Eqs. (197) and (198) we obtain an expression for the shift in the root.

& - Abij (199)

h illustrate this method, let us make an error-sensitivity computation
for a 6 -cell beam that is built-in at both ends using symmetry assumptions at
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the ends and assuming even symmetry about the center. We have seen that the
equations of motion can be written in the form

(Y) + (K](y) - 0 (79)

where

D
9 [K] = - (B4 (B3](B2C] Bj] (80)
6
4

For the case we are considering, the characteristic equation is of the form

:(K11~-nI) K12•

= 0

K2 (K3 1-TI)

or

S = n2 - (K 1 1 + K22)n + (K 1 K_2 - K1K 2 1 ) = 0 (200)

Let us suppose that an element in the B1 matrix is to be varied. We can write

(K] = - [T][B.] (201)

where

(T] = [B4 ][B3 ][B2 ] (202)

Consider now the case at hand where
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C4775 91

54OOh L6025 5841

and evaluate the sensitivity to a perturbation of b2 l. Evaluation of Aq ac-
cording to Eq. (199), assuming h = 1, gives

Ani = 0.157010 Ab2 i

AT2 4.22168 Ab2 1  D
9
6

for the first and second modes, respectively. In this case the actual roots 4

are

1 = 0.394741

n2 = 10.5676

So the fractional changes in the roots are

AU = - 0.443791 Ab2"

0 = - .445731 Ab21T12 bml

This implies that a 1% increase in the magnitude of b2 l will cause a 0.222%
decrease in the first mode frequency and a 0.223% decrease in the second mode
frequency.

It has been pointed out by Clymer,8 Fisher, 9 and others that, in general,
the repeated use of finite difference approximations to the first spatial
derivative will result in less component error sensitivity than using approx-
imations to the second or fourth derivatives. To check this point, let us
calculate the error sensitivity for the same problem using approximations to
the second derivative. Splitting the matrix multiplication differently, we
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will let

(K] = - (T•]B] (203)

where

(T] = [B4 ][B3 ] (204)

(B] = (B2 ](Bl] (205)

D
9
6 In this case, for h = 1, we find that
4 [ 58.1271 -2.50371

(B] - -130.2083 7o.51251 x 10

L 72.0812 -67.8o88J

and

r-1981 4115 -21341
[T] =

L152  -2182 2030]

Again we will calculate the error sensitivity for b 2 1 . Performing the numerical
computations as indicated in the equation, we obtain

An, = -77.6587 Ab21

An2 = -4037.34 Ab2 l

corresponding to

AU = 0.256163 Ab21
b2 l
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*0.497460 A-b2112 1)21

So in this case a 1% increase in the magnitude of b2 l will cause a 0.128% in-
crease in the first mode frequency and a 0.249% increase in the second mode
frequency.

Comparing these results with those for the approximation to the first
derivative, we do not have a very significant difference in sensitivity. In
fact, neither case would be particularly troublesome from the standpoint of
component error sensitivity. Further calculations of error sensitivities for D

other matrix elements show comparable results. 6

4
This same case, using approximations to the first derivative, was checked

for error sensitivity on an actual analog computer with results in accordance
with the above calculations. Percentage frequency shifts were generally less

than half the percentage component change.

As the number of cells N is increased, the differences in error sensitivity
between the first derivative and second derivative approximations should be-
come more apparent. In any case the sensitivity to component errors will in-
crease with N and large sensitivities should be noticed first in the second
derivative approximation.

As Fisher has pointed out, certain elements in the matrix will show con-
siderably more error sensitivity than others. In general the large terms are
more sensitive to error. For our basic higher-order approximation

~ j~Yn -27yr + 27yn+l - Yn+t2) (99)

we would expect a larger sensitivity to errors in the coefficients ±27 than

in the coefficients ±1 or even the coefficient 24. The coefficients ±1 act as
correction or trimming terms and do not need to be held to the same percentage
accuracy.

Te above discussion of error sensitivity applies to digital computers
when considering roundoff errors. The magnitude of the roundoff error is, of
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course, dependent upon the number of digits used in the computations and the
cell number N. It is also dependent upon the differencing scheme used and
the details of the digital program. For the methods used with IB4 704 com-
puter in calculating frequencies for the various cases given in this report,
roundoff errors of the order of 0.01% were first noticed with i/N ratios of
approximately 0.1 or less on cantilever beam computations. Because the use
of symmetry effectively halved the number of degrees of freedom, the calcula-
tions for the built-in beam did not suffer appreciably from roundoff errors.

For reasons of roundoff error and the general complexity of computation,
N - 16 seems to be a rough upper limit on the number of cells to be used in

D analog or digital computations. This detracts somewhat from the utility of
9 the h4 method of representing boundary conditions because it is at large N66 that this method is particularly advantageous from the standpoint of finite

difference or truncation errors. On the other hand, it accentuates the ad-
vantage of higher-order difference methods in general as compared to the simpler
h2 methods, particularly in the computation of the higher frequency modes.
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IX. CONCLUSIONS

The principal conclusions gained from the investigations reported here

are as follows.

1. The use of higher-order differences in the solution of beam-vibration

problems on the analog computer improves accuracy with essentially the

same amount of equipment as would be required for simpler difference
methods. In the digital formulation of the corresponding eigenvalue
problem, a similar improvement in accuracy is obtained with essentially
the same computer effort, as measured by matrix sizes and numbers of

operations. The improved accuracy is obtained by using more inputs D
per amplifier in the analog circuit and more nonzero elements per matrix 9
in the digital computations. 6

4
2. The principal difficulty in the formulation of beam-vibration problems

using higher-order differences lies in the proper representation of
boundary conditions. This difficulty arises from the need for obtain-

ing input data from more stations for each differencing operation to

obtain greater accuracy than in the simpler approximations. As the
boundary is approached, some cf these stations needed for the basic
higher-order central difference approximation lie beyond the end of the

beam, and so other approximations or assumptions must be used. Three

methods are presented for the representation of built-in or free ends,
namely, (1) the use of one-sided differences of order h4 , (2) the use

of symmetry assumptions at the boundary, and (3) the passive circuit

method.

Each method has its areas of special utility, as seen from the re-

sults of calculations for uniform beams. The h 4 method is best suited
to relatively small i/N ratios, corresponding to accuracies of 0.25% or

better. The symmetry method is most advantageous in obtaining moderate-

ly good accuracies (the order of 1%) for all but the highest modes with
a minimum of equipment, particularly for a cell number N < 9. The pas-

sive circuit method has quite good accuracy in general, and in particu-
lar for the higher modes (large i/N ratios) where N > 9.

3. The discussion of errors centered on (1) truncation errors from the
basic central difference approximation and also from the boundary-
condition representation and (2) component and roundoff errors. Error
considerations as well as the ease of representing boundaries were im-
portant in choosing to approximate the first spatial derivative rather

than the second or higher derivatives and also in the use of staggered
stations in the calculation of successive derivatives.
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The methods proposed in this report are relatively insensitive
to component or roundoff errors for N < 16. Larger values of N are
not recommended because of the general computational complexity and
also the increasing size of component or roundoff errors.

4. The h4 and symmetry methods are nonphysical in the sense that no system
composed of linear bilateral elements can be found that is represented
exactly by the equations of motion. This is a result of the fact that
the stiffness matrices are not symmetric in these cases. On the other

D hand, the h2 and the passive circuit methods result in physically
9 realizable systems. The latter two methods have the further advantage
6 realiabe systemods ha thenfurther ta
4that the resulting modes are orthogonal, i.e., a transformation to

modal coordinates simultaneously diagonalizes the mass and stiffness
matrices.

University of Michigan,
Ann Arbor, Mich., October 1961.
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APPENDIX A

ALTERNATE MATRIX FORMULATION

The matrix formulation of the difference equations that we have used thus
far involves the solution of Eq. (81) for its eigenvalues, the matrix K being
obtained after three matrix multiplications. Any assumptions with regard to
boundary conditions or constraints are put into the individual matrices before
the matrix multiplications are performed. An alternate scheme, particularly
adapted to digital computers, enables one to obtain the same K matrix without
losing sight of the subsidiary assumptions. 9

6
As an example of the alternate method, consider again the problem of the 4

6-cell, built-in beam using symmetry assumptions at the ends. Equations (145)
to (148) could be obtained from the following eight equations:

= ,Y- (Al)
19, 0 1i -27 27-1 Y

2

r0 Y 50 -1
y _l 50 -9(1 2
Y2 225 0 2  (A2)
Iy3I 0 225

LYJv 225~

1 1 -27
= 27 -1 0 g,

2

Q4 2
0b 0

1 H 01 (A4)

L2
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[, 1 [ 2727 4oJi 0 M

2 Mo-

{}, - 0 1 27 2 (A.)

02
V2 "0 2 -27 J2 (A

1-1 0 1 - 27 =v0

6 M 1 30 0

2

These equations explicitly separate the basic difference equations and the
boundary conditions.
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APPENDIX B

TAPERED CANTILEVER BEAM

The analysis that has been made in the main body of the report has been
concerned with the lateral vibrations of uniform beams. In this appendix we
will indicate the sort of results to be expected when higher-order methods are
applied to nonuniform beams.

ANALYTICAL SOLUTION D
9

The case of a beam of unit width and with uniform mass per unit volume and 6

a linearly decreasing depth has been analyzed by Siddall and Isakson. 1 1 Theoret- 4

ical eigenvalues were obtained for the case where the depth at the free end is
one-fifth that at the built-in end. (See Fig. 22.) For a beam of unit length,
the linear density is

p = 2(1 - o.8x) (Bl)

and the bending stiffness is

EI -= (1 - O.8x) 3  (B2)
3

The cantilever beam is built-in at x = 0.

Theoretical frequencies (rad/sec) for this case are

01 = 2.47829

02 = 9.08902

03 = 21.2953

FINITE DIFFERENCE FORMULATION

The same tapered beam was studied using the finite difference approach.
In a manner similar to that for the uniform beam, the natural frequencies were
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calculated using various boundary-condition assumptions.

For a nonuniform beam, new assumptions must be made concerning the method

of lumping the mass and stiffness. Again we assume uniform cell size (h-1) and

end the beam at half-integer stations. The total mass of each cell is lumped

at its center. Similarly, the total effective bending stiffness of each cell
(i.e., between consecutive half-stations) is lumped at its center.

Specifically, the mass lumped at the nth station is (see Fig. 22)

D
9 fn4j
6 p(x)dx (B3)4 mn

n-.1
2

Using higher-order differences, we obtain the acceleration at the nth station
from

n 1 ( Vn 2 + 2 7 Vn - 7Vn+ + Vn+a) (B4)
Nmnh 2 2 2 2

The lumped bending stiffness is

n+1
2/ dx

(EI)n J EI(x) (B5)
n-.J

2

resulting in the bending moment equation

S= E -)n(On. - 2 7 9n-.l + 2 79 n+.& - Qn+.a) (B6)

24h 2 2 2 2

The slope and shear force equations remain unaltered from the case of a uniform
beam.
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In general, the boundary conditions are imposed in the same manner as for
a uniform beam. An exception occurs in the passive circuit case where the ef-
fective mass m2 near the built-in end includes the reflected value (as seen
from station 2) of the actual mass ml. A similar reflection of bending stiff-
ness occurs near a free end.

Also, it should be noted that the constraint equation

2 1

Y1 = Y2 - (130)

D
is of order h4 for the case of a nonuniform beam instead of order he as was the 9
case for the uniform beam. 6

4

RESULTS

Error curves for the tapered beam are shown in Figs. 23-26. Comparing
these results with those for the uniform beam, one finds the various methods
retain many of their characteristics in spite of a general reduction of accura-
cy. The h2 method shows good accuracy for the fundamental mode while the higher-
order methods (the symmetry and passive circuit methods, in particular) have
better accuracy on the higher modes. The h4 method suffers the largest loss
of accuracy due the nonuniform mass and stiffness distributions.

The general lowering of mode frequencies compared to the uniform beam is
probably due primarily to the mass lumping method which results in a slight
positive shift in the center of mass location compared to the continuous beam.
This is because the mass is lumped at the center of the cell whereas the actual
center of mass for the cell is located slightly inboard of the center, i.e.,
toward the built-in end. Similarly, the compliance (inverse stiffness) for a
cell is lumped at the center and is thus somewhat inboard of its compliance
centroid. This also results in a lowering of the natural frequencies.
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TABLE I

ONE-SIDED APPROXIMATIONS OF ORDER h 4

A. General Case

x IN .1_.l [ 93Y, + 229y2 - 225Y3 + 11ly4 - 22Y51 + 263h4 ý5y!

T 24h 640 ýX 5 i D
2 2 9

6
4

'Yj • -•[_ 22y, + 17Y2 + 9y3 - 5y4 + Y51 - 190h4 ýY
6x 2 24h 1920 2x5

2 2

1v -1[- 22Q. + 17.1 + 99. - 59Z + 9.] - 1-h4 l
T 24h 2 2 2 2 2 1920 6X 5

B. Fory• = 0
2

6Y ' -L i [3675Y1 - 12 2 5y2 + 441y 3 - 75Y41] + -L-h4 5Y
6x1 840h 12 ýxI
2 2

'y a .• 1 [_ 10 8 5y, + 1015y2 - 6 3Y3 + 5Y41] + -1h4 )X5

Tx840h 1920 0x 1.
2

C. For y1 =O, Q. . 0
2 2

Y, 2 1 1 5 29 h(6 y72 7Y3 +-4h xj

('y i 2 2 5y1 + 250y2 - 9Y31 + lh4

5x- 1.2 225"h 24o Ux5 ,
2 2



75

TABLE I (Continued)

D. For-- =0

2

Tx72h 2 2 2 2 1920 •x-I

D
9
6
4
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TABLE II

MODE FREQE•NCIES OF A BUILT-IN OR FREE UNIFORM BEAR*

Approximation Method
N Mode Continuous Passive

h2 h4 Symmetry Circuit

1 22.373 - 1.466% 3.831% 13.565%
22.045 23.230 25.408

4 1 22.373 1.135% 1.850% 4.863% D
22.627 22.787 23.461 9

6
-17.961% - 1.516% 1.527% 4

4 2 61.673 50.596 60.738 62.615

1.256% 0.796% 1.345% 2.700%22.373 22.654 22.551 22.674 22.977

61.673 - 9.357% -11.052% 0.028% 3.259%

55.902 54.857 61.690 63.683

-27.833% -24.607% - 8.313% - 6.907%120.90 87.246 91.155 1i0.85 112.55

1.059% 0.590% 1.095% 1.636%6 1 22.373 22.610 22.505 22.618 22.739

- 5.6og% - 3.755% 0.328% 2.679%6 2 61.673 58.214 59.357 61.875 63.325

6 120.90 -17.883% -17.436% - 3.201% - 0.935%
99.281 99.820 117.03 119.77

4 199.86 -34.099% -23.131% -14.000o% -13.274%
131.71 153.63 171.88 173.33

*The percentages refer to the error in frequency as compared to the continuous
beam.
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TABLE II (Continued)

Approximation Method
N Mode Continuous h2 h4  Symmetry Passive

Circuit

1 22.373 o.858% 0.340% 0.912$ i.o64%
22.565 22.449 22.577 22.611

D
9 - 3.707$ - 0.751% o.46o0 2.006$
6 2.59.387 61.210 61.957 62.910
4

-12.3330 - 9.992$ - 1.472% 0.711
7 3 120.90 105.99 108.82 119.12 121.76

7 4199.86 -24.307% -19.494$ - 6.9150 - 5.424%
151.28 160.90 186.04 189.o2

7 298.56 -38.354$ -23.617% -18.412% -18.ooo%
184.05 228.05 243.59 244.82

8 1 22.373 0.697% 0.192% 0.764% 0.729%
22.529 22.416 22.544 22.536

8 2 61.673 - 2.627% 0.091$ 0.522% 1.493%
60.053 61.729 61.995 62.594

- 8.983% - 4.8o6% - o.695% 1.092%
8 120.90 0llO.04 115.09 120.06 122.22

8 419.86 -18.063$ -14.140% - 3.8230 - 2.086%
163.76 171.60 192.22 195.69

8 5 298.56 -29.163% -20.117% -10.480% - 9.489%
211.49 238.50 267.27 270.23

8 6 416.99 -41.411% -24.933% -21.823% -21.569%
244.31 313.02 325.99 327.05
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TABLE II (Continued)

Approximation Method

N Mode Continuous Passive
h 2  h4 Symmetry Circuit

0.572% 0.107% 0.653% 0.523%
9 1 22.373 22.501 22.397 22.519 22.490

- 1.959% 0.243% 0.537% 1.129%
9 2 61.673 60.465 61.823 62.004 62.369

- 6.832% - 2.026% - 0.281$ 1.092% 9D
9 3 120.90 112.64 118.45 120.56 122.22 6

-13.905% - 9.031% - 2.272% - 0.620%
199.86 172.07 181.81 195.32 198.62

-22.773% -16.342% - 6.391% - 5.078%
9 5 298.56 230.57 249.77 279.48 283.40

-32.907% -20.665$ -13.669% -12.996%
9 6 416.99 279.77 330.82 359.99 362.80

-43.707% -26.471$ -24.504% -24.337%
9 7 555.17 312.52 408.21 419.13 420.06

0.474% 0.063% 0.550% 0.384%
10 1 22.373 22.479 22.387 22.496 22.459

- 1.518% 0.217% 0.525% 0.866%
10 2 61.673 60.737 61.807 61.997 62.207

- 5.368% - 0.753% - 0.033% 0.976%
10 3 120.90 114.41 119.99 12o.86 122.08

-11.018% - 5.244$ - 1.401% 0.030%
1 4 199.86 177.84 189.38 197.o6 199.92

-18.214% -12.165% - 4.123% - 2.726%
10 5 298.56 244.18 262.24 286.25 290.42

-26.629% -17.506% - 8.947% - 7.959%
10 6 416.99 305.95 343.99 379.68 383.80

-35-865% -21.478% -16.449% -15.972%
10 7 555.17 356.06 435.93 463.85 466.50

-45.493% -27.959% -26.649% -26.534%
10 8 715.08 388.68 513.71 523.05 523.87
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TABIE II (Continued)

Approximation Method
N Mode Continuous Passive

h2 h' Symmetry Circuit

0.402% 0.035% 0.478% 0.295%
D11 1 22.373 22.463 22.381 22.480 22.439

9
6 - 1.213% 0.162% 0.499% 0.678%
4 11 2 61.673 60.925 61.773 61.981 62.091

- 4.334% - 0.232% o.116% o.844%
1 12.90 115.66 120.62 121.04 121.92

11 4 199.86 8.936% - 2.867% - 0.866% 0.314%
182.00 194.13 198.13 200.49

-14.871% - 8.377% - 2.767% - 1.44o%
11 5 298.56 254.16 273.55 290.30 294.26

-21.919% -14.185% - 6.098% - 4.959%
ll 6 416.99 325.59 357.84 391.56 396.31

-29.812% -18.328% -11.366% -10.620%
11 7 555.17 389.66 453.42 492.07 496.21

11 8 713.08 -38.248% -22.501% -18.844% -18.499%
440.34 552.63 478.71 581.17

-46.918% -29.311% -28.398% -28.317%
11 9 890.73 472.82 629.65 637.78 638.50
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TABLE II (Continued)

Approximation Method
N Mode Continuous Passiveh2 h4 Syiznetry Circuit

12 1 22.373 0.340% 0.022$ o.416$ 0.228%
22.449 22.378 22.466 22.424

- 0.992$ 0.114% o.467% 0.538% D
12 2 61.673 61.o6i 61.743 61.961 62.005 9

6
- 3.573% - 0.025% 0.199% 0.720%

12 3 120.90 116.58 120.87 121.14 121.77

12 199.86 - 7.395% - 1.516% - 0.520% 0.430%
185.o8 196.83 198.82 200.72

12 5 298.56 -12.363% - 5.446% - 1.906% - 0.717%
261.65 282.30 292.87 296.42

12 6 416.99 -18.322% -10.856% - 4.295% - 3.132%
340.59 371.72 399.08 403.93

-25.097% -15.494% - 8.086$ - 7.171$

12 555.17 415.84 469.15 510.28 515.36

-32.468$ -19.124% -13.590% -13.023%
12 713.08 481.56 576.71 616.17 620.23

1 -40.206$ -23.619% -20.910% -20.653%
12 9 890.73 532.60 680.35 704.48 706.77

-48.084% -30.508$ -29.850% -29.786%
12 10 1088.1 564.93 756.16 763.32 763.98
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TABLE II (Continued)

Approximation Method

N Mode Continuous Passive
h2 h4 Syim~etry Circuit

o0.295% 0.013% 0.362% 0.179%

D13 1 22.373 22.439 22.376 22.454 22.413

9
6 2 61.673 - o.827% 0.078% 0.431% 0.435%
413 61.163 61.721 61.939 61.941

- 2.994% o.041% 0.248% o.604%
13 3 120.90 117.28 120.95 121.20 121.63

13 199.86 - 6.219% - 0.791% - 0.285% 0.460%
187.43 198.28 199.29 200.78

-lO.43o% - 3.423% - 1.330% - 0.301%
13 5 298.56 267.42 288.34 294.59 297.66

13 6 416.99 -15.526% - 7.897% - 3.103% - 1.990%
352.25 384.06 404.05 408.69

-21.379% -12.656% - 5.904% - 4.914%
13 7 555.•17 436.48 484.91 522.39 527.89

13 8 71308 -27.830% -16.455% -10.014% - 9.278%
514.63 595.74 641.67 646.92

890.73 -34.710% -19.988% -15.61m% -15.170%

13 8 7581.56 712.69 751.67 755.61

13 10 1088.1 -41.841% -24.740% -22.700% -22.498%
632.83 818.86 841.13 843.26

-49.054% -31.564% -31.073% -31.02T•
13 11 1305.3 665.02 893.32 899.71 900.30
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TABLE II (Continued)

Approximation Method
N Mode Continuous Passive

h2 h4 Symmetry Circuit

14 1 22.373 0.255% 0.009% 0.322% o.147%
22.430 22.375 22.445 22.406

14 2 61.673 - 0.700% 0.052% 0.397% 0.355%
61.241 61.705 61.918 61.892 D

9
- 2.548% 0.058% 0.281% 0.521% 6

14 3 120.90 117.82 120.97 121.24 121.53 4

14 4 199.86 - 5.309% - O.410o% - 0.130% O.440o%

189.25 199.04 199.60 200.76

- 8.919% - 2.124% - 0.931% - 0.060%
14 298.56 271.93 292.22 295.79 298.38

-13.314% - 5.537% - 2.281% - 1.266%
14 6 416.99 361.47 393.90 407.48 411.71

-18.407% - 9.936% - 4.408% - 3.412%
14 7 555.17 452.98 500.01 530.70 536.23

-24.o74% -13.955% - 7.531% - 6.696%
14 8 713.08 541.41 613.57 659.38 665.33

189073 -30.191% -17.294% -11.844% -11.249%

14 9 621.81 736.69 785.23 790.53

14 10 1088. i-36.623% -20.908% -17.434% -17.085%
689.63 86o.61 898.4o 902.19

14 11 1305.3 -43.231% -25.837% -24.263% -24.107%
741.04 968.06 988.64 990.63

-49.867% -32.482% -32.112% -32.073%
14 12 1542.1 773.10 1041.2 1046.9 1047.5
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TABLE II (Continued)

Approximation Method
N Mode Continuous h2  h4  Symmetry Passive

Circuit

0.223% 0.000% 0.282% o.116%.
15 1 22.373 22.423 22.373 22.436 22.399

- 0.602% 0.034% 0.365% 0.293%
15 2 61.673 61.302 61.694 61.898 61.854

D - 2.200% 0.058% 0.289% o.438%
915 120.90 118.24 120.97 121.25 121.43
6
4 . - 4.578% - 0.215% - 0.020% o.425%

15 199.86 190.71 199.43 199.82 200.71

- 7.714% - 1.320% - o.646% 0.077%
15 298.56 275.53 294.62 296.63 298.79

-11.540% - 3.801% - 1.698% - 0.794%
15 6 416.99 368.87 401.14 409.91 413.68

-16.oo1% - 7.536% - 3.347% - 2.392%
15 7 555.17 466.34 513.33 536.59 541.89

-21.005% -11.526% - 5.765% - 4.891%
15 713.08 563.30 630.89 671.97 678.20

-26.455% -14.961% - 9.128% - 8.429%
15 9 890.73 655.09 757.47 809.42 815.65

15 10 1088.1 -32.249% -18.114% -13.556% -13.069%
737.24 891.04 940.62 945.89

-38.275% -21.857% -19.084% -18.8oo%
15 11 1305.3 805.74 1020.0 1056.2 1059.9

-44.413% :26.859% -25.621% -25.498%
-5 12 1542.1 857.23 1127.9 1147.0 1148.9

-50.564% -33.296% -33.007% -32.979%
15 13 1798.7 889.17 1199.8 1205.0 1205.5
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TABLE II (Concluded)

Approximation Method
N Mode Continuous 2 Passive

Mosh h Symet Circuit

0.197% 0.000% 0.250% 0.098%
16 1 22.373 22.417 22.373 22.429 22.395

- 0.524% 0.023% 0.334% 0.245%
16 2 61.673 61,350 61.687 61.879 61.824

- 1.911% O.041% 0.289% 0.380%
16 3 120.90 118.59 120.95 121.25 121.36 D

9
S- 3.993% - 0.110% 0.050% 0.390% 6

16 4 199.86 191.88 199.64 199.96 200.64 4

- 6.736% - 0.827% - 0.439% 0.151%
16 298.56 278.45 296.09 297.25 299.01

-10.096% - 2.588% - 1.273% - 0.484%
16 6 416.99 374.89 406.20 411.68 414.97

-14.030% - 5.575% - 2.576% - 1.690%
16 7 555.17 477.28 524.22 540.87 545.79

-18.471% - 9.254% - 4.483% - 3.612%
16 8 713.08 581.37 647.09 681.11 687.32

-23.343% -12.761% - 7.141% - 6.382%
16 9 890.73 682.81 777.06 827.12 833.88

-28.562% -15.817% -10.671% -10.082%
16 10 10881 777.32 915.96 971.99 978.39

-34.046% -18.946% -15.146% -14.748%

16 1i 1305.3 860.86 1058.o 1107.6 1112.8

12 1542.1 -39.700% -22.800o% -20.556% -20.329%

929.88 1190.5 1225.1 1228.6

16 13 1798.7 -45.438% -27.809% -26.825% -26.725%
981.40 1298.5 1316.2 1318.o

-51.173% -34.o18% -33.786% -33.762%
16 14 2075.1 1013.2 1369.2 1374.0 1374.5
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TABLE III

MVDE FREQUENCIES OF A UNIFORM CANTILEVER BEAM

Approximation Method
N Mode Continuous h2 Symetry Passive

Circuit
D9 23.560 13.766% 3.851% 4.209%
6 4.0000 3.6514 3.6640
4

3 1 3.5160 6.030% 1.812% 1.257%
3.728 3.5797 3.5602

3 2 22.034 - 1.389% 3.980% 10.674%
21.728 22.911 24.386

4 1 3.5160 3.356% 1.135% 0.549%
3.634 3.5559 3.5353

2 22.034 1.035% 1.938% 5.328%

22.262 22.461 23.208

4 3 61.697 -17.941% - 1.520% 1.483%50.628 60.759 62.612

5 1 3.5160 2.142% O.060% 0.774% 0.284%
3.5913 3.5181 3.5432 3.5260

5 2 22.034 1.153% o.88o% 1.4o2% 2.927%
22.288 22.228 22.343 22.679

5 3 61.697 - 9.333% -11.665% 0.023% 3.232%
55.939 54.500 61.711 63.691

4 120.90 -27.841% -23.956% - 8.313% - 6.898%
87.242 91.937 1i0.85 112.56
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TABLE III (Continued)

Approximation Method
N Mode Continuous Passive

hh4 Symmetry Circuit

6 3.5160 I.4818% 0.028% 0.555% o.168%
3.5681 3.5170 3.5355 3.5219

6 2 22.034 0.976% o.613% 1.135% 1.770% D
22.249 22.169 22.284 22.424 9

6

6 3 61.697 - 5.589% - 3.827% 0.324% 2.663% 4
58.249 59.336 61.897 63.340

6 120.90 -17.885% -17.443% - 3.201% - 0.935%
99.277 99.811 117.03 119.77

199.86 -34.o99% -23.101% -14.000% -13.274%

131.71 153.69 171.88 173.33

7 1 3.5160 i.o86% 0.017% o.418% 0.102%
3.5542 3.5166 3.5307 3.5196

o.794% 0.345% o.944% 1.148%
2 22.034 22.209 22.110 22.242 22.287

7 3 61.697 - 3.691% - 0.772% o.459% 1.997%
59.420 61.221 61.980 62.929

4 120.90 -12.333% - 9.992% - 1.472% 0.711%
105.99 108.82 119.12 121.76

-24.307% -19.479% - 6.915% - 5.424%7 199.86 151.28 160.93 186.04 189.02

6 298.56 -38.354% -23.620% -18.412% -18.000%184.05 228.04 243.59 244.82



87

TABLE III (Continued)

Approximation Method
N Mode Continuous 2 Passive

h• h4 Symmetry Circuit

o0.828% 0.009% 0.319% 0.063%
1 3.5160 3.5451 3.5163 3.5272 3.5182

D 8 2 22.034 0.644% 0.191% 0.790% 0.785%
9 22.176 22.076 22.208 22.207

6 - 2.614% o.086% 0.520% 1.488%
4 8 3 61.697 60.084 61.750 62.018 62.615

- 8.991% - 4.797% - 0.695% 1.092%
4 120.90 110.03 115.10 120.06 122.22

-18.o63% -14.14o% - 3.823% - 2.086%
5 199.86 163.76 171.60 192.22 195.69

-29.163% -20.117% -10.480% - 9.489%

16 298156 21.49 238.50 267.27 270.23

8 7 416.99 -41.411% -24.931% -21.823% -21.569%

244.31 313.03 325.99 327.05

9 1 3.5160 0.648% 0.006% 0.236% 0.043%
3.5388 3.5162 3.5243 3.5175

0.531% 0.104% 0.667% 0.558%
9 2 22.034 22.151 22.057 22.181 22.157

- 1.948 0.242% 0.534% 1.130%
3 61.697 60.495 61.846 62.028 62.394

- 6.832% - 2.026% - 0.281% 1.092%
4 120.90 112.64 118.45 120.56 122.22

-13.905% - 9.031% - 2.272% - 0.620%
5 199.86 172.07 181.81 195.32 198.62

-22.773% -16.342% - 6.391% - 5.074%
9 6 298.56 230.57 249.77 279.48 283.41

-32.907% -20.665% -13.669% -12.996%
9 7 416.99 279.77 330.82 359.99 362.80

-43.707% -26.471% -24.504% -24.338%
9 8 555.17 312.52 408.21 419.13 420.05
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TABLE III (Continued)

Approximation Method

Mode Continuous h2  Symetry Passiveh2 h4Synnt ry Circuit

10 3.516o 0.509% 0.003% o.1148% 0.028%
3.5339 3.5161 3.5212 3.5170

0o.44o% O.068% 0.567% 0.4109% D
10 22.034 22.131 22.0o9 22.159 22.124 9

6
- 1.509% 0.217% 0.525% o.864% 4

0 361.697 60.766 61.831 62.021 62.230

- 5.368% - 0.753% - 0.033% 0.976%
10 120.90 114.41 119.99 120.86 122.08

-11.018% - 5.244% - 1.4o1% 0.030%
0 5 199.86 177.84 189.38 197.06 199.92

-18.214% -12.165% - 4.123% - 2.726%
16 298.56 244.18 262.24 286.25 290.42

-26.627% -17.5o6% - 8.947% - 7.959%
17 416.99 305.96 343.99 379.68 383.80

10 8 555.17 -35.865% -21.478% -16.447% -15.972%
356.o6 435.93 463.86 466.50

-45. 491% -27.959% -26.649% -26.534%
19 713.08 388.69 513.71 523.05 523.87
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TABLE III (Concluded)

Approximation Method
N Ybde Continuous h2  hP Symsetry Passive

&~juauery Circuit

o0.395% 0.003% 0.054% 0.023%

Di 1 3.5160 3.5299 3.5161 3.5179 3.5168

9
6 11 2 22.034 0.368% 0.050% o.486% 0.309%
4 22.11.5 22.045 22.141 22.102

- 1.204% o.162% o.499% 0.676%
1 3 61.697 60.954 61.797 62.005 62.114

- 4.334% - 0.232% o.116% 0.835%
11 4 120.90 i15.66 120.62 121.04 121.91

- 8.936% - 2.867% - 0.866% 0.315%
15 199.86 182.OO 194.13 198.13 200.49

11 6 298.56 -14.871% - 8.377% - 2.767% - 1.444%
254.16 273.55 290.30 294.25

-21.919% -14.185% - 6.o96% - 4.959%
11 7 416.99 325.59 357.84 391.57 396.31

-29.811% -18.328% -1.366% -10.618%
11 8 555.17 389.67 453.42 492.07 496.22

-38.250% -22.501% -18.844% -18.497%
11 9 713.08 440.33 552.63 578.71 581.18

-46.918% -29.311% -28.398% -28.316%
11 10 890.73 472.82 629.65 637.78 638.51
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Sa. Mechanical representation of the simple finite

difference approximation to a uniform beam.
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b. Electrical representation of the simple finite

difference approximation to a uniform beam.

Fig. 3.



a. Even symmetry about center (symmetric mode).

b. Odd symmetry about center (antisymmetric mode).

Fig. 4.
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Fig. 5.
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Fig. 6. Analog computer circuit for a six-coll beam built-in at both

ends. Differences of order hl are used. Only the left halt of the
beam Is represented.
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lines show assumptions used in computations. Dashed lines

indicate deviations giving a physically consistent set of
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NASA-Langley, 1961
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